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CRACK PATHS IN PLANE SITUATIONS—I.
GENERAL FORM OF THE EXPANSION OF THE
STRESS INTENSITY FACTORS

J. B. LeBLonD?t
Laboratoire de Mecanique des Solides. Ecole Polytechnique, Palaiseau, France

(Received |8 February 1988 ; in revised form 9 February 1989)

Abstract—The aim of this series of papers is to provide formulas for the geometrical parameters
(branching angle. curvature) of a crack propagating in the most general plane situation. These
formulas can be used for numerical predictions of crack paths. ’

The first paper addresses the problem of establishing the general form of the first three terms of
the expansion of the stress intensity factors in powers of the crack extension length, i.e. of specifying
the geometrical and mechanical parameters they depend upon. The treatment is based on two main
elements: dimensional analysis (scale changes) and regularity properties (continuity, differ-
cntiability) of the stresses with respect to the crack extension length. It is shown that most terms
have universal expressions in the sense that they depend only on the parameters characterizing the
local geomietry of the crack and its extension and the stress field near the initial crack tip. whatever
the geometry of the body under consideration and the prescribed forces or displacements.

[. INTRODUCTION

Predicting crack paths is a popular problem in LEFM. Most works devoted to this question
are restricted to the simpler case of two-dimensional situations (plane strain conditions).

It is clear that the prediction must necessarily be numerical at some stage. Indeed it
requires the knowledge of the stress intensity Factors (SIFs) at the tip of the propagating
crack, and there is no hope that an analytical, explicit formula will ever provide the SHF's
in the most general plane situation (arbitrary geometry of the body and the crack, arbitrary
loading).

The simplest approach consists in modelling the crack as a succession of straight
secgments. At cach step, once the SIFs at the present crack tip have been evaluated numeri-
cally, the branching angle must be deduced from some propagation criterion, for instance
the “maximum hoop stress criterion”™ (Erdogan and Sih, 1963) or the “principle of local
symmetry” (PLS) (Goldstein and Salganik, 1974). This method has been used notably by
Murakami (1980) and Swenson and Ingraffea (1987). Even in this simple approach, a
number of theoretical problems remain unsolved. For instance, no decisive argument has
been put forward up to now with regard to the choice which should be made among
existing propagation criteria. Morcover, the use of some of these, notably the PLS, requires
knowledge of the SIFs just after the kink, and the formulas expressing these SIFs in terms
of those just before the kink and the branching angle have been established only in a very
particular case @ infinite body, uniform forces at infinity, straight initial crack (Bilby et al.,
1977 Wu, 1978a.b; Amestoy et ul., 1979). However these theoretical difficultics have
almost no practical consequences ; it ts known for instance that all existing criteria lead to
very similar numerical predictions. This approach can thercfore be rated as operational.

In a more sophisticated approach, the crack is modelled as a succession of curved arcs,
with or without kink angles between them. This has been done by Sumi (1986a, b). using
the PLS as a criterion. It is then necessary to specify, at cach step of the numerical procedure,
not only the branching angle (if there is one) but also the curvature of the crack extension.
This is achicved by using an analytical expansion of the SIFs in powers of the length s of
the crack extension, where the influence of the curvature of the extension appears in an
explicit way, and deducing the valuc of this paramcter from the condition that the SIF
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corresponding to mode 2 must vanish along the propagation path, as required by the PLS.
This raises the problem of obtaining such an expansion. or at least its first terms.

This theoretical problem is obviously difficult and has received only partial solutions
up to now. These solutions can be divided into two classes. The first is composed of solutions
which are rigorously exact but valid only for particular geometries and loadings. Chatterjee
(1975). using Muskhelishvili’s method, considered for instance the problem of a crack
consisting of two straight branches in an infinite medium loaded by uniform forces at infinity.
The length s of the secondary branch was arbitrary so that the results obtained (which were
expressed in a purely numerical form) contained implicitly all the terms of the expansion
of the SIFs in powers of s but this expansion was obviously of limited applicability. The
second term (proportional to \/:v) of the expansion of the SIFs was studied in the same
particular case by Bilby and Cardew (1975). using the previous work of Khrapkov (1971),
and later by Amestoy et al. (1986), by a different method and in a more complete way.

The second class is composed of approximate expansions for nearly straight cracks.
Cotterell and Rice (1980) used a perturbation method devised by Banichuk (1970) to study
a nearly straight crack in an infinite body. The work of Karihaloo et al. (1981) was restricted
to the case of a straight initial crack, but these authors carried out their analysis to a higher
order with respect to the small parameters characterizing the deviations of the crack
extension from straightness. Sumi et al. (1983) also considered a nearly straight extension
of a straight initial (edge) crack, but in a body of arbitrary gcometry. Their work is of
considerable interest since among the few available expansions, theirs is the only one which
applics to bodies of finite dimensions. It was this expanston that Sumi (1986a, b) used for
numcrical predictions of crack paths. It is still however of limited applicability, and its usc
in cases where its conditions of validity are not fulfilled certainly leads to errors, though
these have not been quantilied. This remark applics in particular to Sumi’s work (19864, b).

The aim of the present work is to obtain the beginning of the expansion of the SIFs
in powcers of the length s of the (kinked and curved) crack extension, in the most general
case: arbitrary geometry of the body, the crack and its extension, with arbitrary loading.
We will restrict our attention to the first three terms of this expansion (proportional
respectively to s" = 1, s and s' = 5) because, as will appear, this is suflicient to obtain the
expression of the curvature at all points of the propagation path. However, extending the
analysis to higher orders in s would not raise any difficulty of principle ; one would then
obtain the expression of the derivative of the curvature with respect to s, of its second
derivative, and so on.

It is improbable that analytical methods can solve very general problems, Therefore
our objective requires the use of new methods which should not be completely analytical
in nature. The approach adopted here is as follows.

We will start by establishing, in this paper, the general form of the successive terms of
the expansion of the SIFs in an arbitrary situation; this means specifying the various
geometrical and mechanical parameters they depend upon. The arguments used will be of
very general nature, based essentiully on dimensional analysis (scale changes) and on
regularity propertics (continuity, differentiability) of the stresses at a fixed point with respect
to s.

In further papers we will identify the various functions appearing in the expansion by
considering some special cases where the solution can be obtained by analytical means, The
problem of the propagation criterion will then be studied. It will be shown notably that
purely logical considerations of internal coherence within the lincar elastic model lead to
the PLS as the only possible criterion. We will conclude by combining this criterion with
the expansion of the SIFs derived previously to derive formulas for the geometric parameters
of the crack extension, which can be used in numerical applications.

This paper is organized as follows. After having stated general hypotheses and
notations in Section 2, we cstablish in Section 3 the continuity of the displacement and
stresses at a fixed point of the body when a kink occurs on the crack. This property is used
in Section 4 to show that the SIFs just after the kink depend only on those just before the
kink and the branching angle, whatever the geometry of the body, the crack and its extension
and the prescribed forces or displacements; this means that the formulas established by
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Fig. 1. Definition of the general problem studied.

Bilby et al. (1977), Wu (1978a, b) and Amestoy ez al. (1979) in a particular case are in fact
of universal value. We refine in Section 5 the results of Section 3 by showing that the
displacement and stresses at a fixed point are differentiable with respect to the length s of
the (kinked and curved) crack extension at s = 0, and that the corresponding derivatives
are independent of the curvature of the extension. These propertics are used in Sections 6
and 7 to study the second and third terms of the expansion of the SIFs (proportional to
s' “and 5' = 5). These terms are expressed as sums of quantities, most of which are again
of universal character, in the sense that they depend only on local parameters describing
the geometry of the crack and its extension (branching angle, curvature parameters) and
the initial stress field (SIFs, non-singular stress. . .), without any explicit reference to the
far geometry of the body nor to the loading imposed on its boundary. However the third
term of the expansion is shown to involve one nen-universal quantity, which depends on
the geometry of the entire body under consideration and must therefore be evaluated in
cach particular case. Finally we outline in conclusion a numerical method for crack path
predictions based on these results.

2. STATEMENT OF THE PROBLEM

We consider (Fig. 1) the general problem of an clastic body Q under plane strain
conditions, containing a curvilinear crack. The boundary of this body, including the lips of
the crack, is subjected to constant (with respect to time)t prescribed line tractions t* on a
portion 2, and to constunt prescribed displacements u® on the complementary part 29,
The lips of the crack are supposed to be traction-frec in the vicinity of the crack tip and to
remain truction-free upon subsequent propagation; we exclude thus the case of a crack
loaded by an internal pressure due to a fluid. There are no body forces.

At the instant considered, the crack extends up to a point O, where its curvature is C.
The subsequent crack extension makes an initial angle zm (— 1 < m < + 1) with the tangent
Ox, to the crack at the point Q. (The case of regular propagation with a continuously
varying tangent will be treated as a particular case where m takes the value 0). The length
of the extension will be denoted s and the distance along the extension from the point O to
an arbitrary point, s'. Oy, y, being an orthonormal coordinate system with first axis directed
along the tangent to the extension at the point O, the equation of the extension will be
supposed to be of the form

C‘ - 3
yr=a*yi*+ 5 yit+o(r) (H

where a* and C* are parameters.] It is proved in Appendix A that crack extensions of that

+In fact, except in the case of subcritical propagation, (quasistatic) propagation of the crack is possible only
il the load applied varies. This variation will be introduced in the subsequent papers; it will be shown notably
that for praportional loadings, it has no influence on the propagation path.

$ The notations O and o are used throughout this paper. It is recalled that a function is O(x”) if it is bounded
by some constant times x* for x — 0, and o(x*) if it is of the form x"/(x) with l'ilr‘\)f(x) = .
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shape must necessarily be considered. if these extensions are to be obtainable by actual
propagation of the crack and not simply by arbitrary machining of the body. and if
propagation is to obey the PLS.

The general object of our study is the expansion of the SIFs k,(s). &,(s) at the tip of
the extended crack in powers of s.

3. CONTINUITY OF THE DISPLACEMENT AND STRESSES AT A FIXED POINT WITH
RESPECT TO THE CRACK EXTENSION LENGTH

The aim of this section is to establish that at a fixed point M of the body, the stresses
are continuous with respect to s at s = 0. i.e. they do not undergo a sudden jump when the
kink occurs. In fact our proof will apply to the displacement as well as to the stresses.

We consider the body in two situations. In the first one, the crack ends up at the point
O. and the displacement at M is u(M). The crack extension can be supposed to be opened
over a length s provided suitable tractions t*(s") are exerted on its upper (+) and lower
(=) lips: these tractions are O(s"~ ). In the second situation, the crack is extended further
over a length s. i.e. the tractions just mentioned are released. The displacement at M is then
u(M,s).

Taking the difference between these two situations, we obtain what will be called
problem A. In this problem a zero traction is imposed on ¢€Q,, a zero displacement on °Q,,
and tractions —t*(s") are exerted on the lips of the crack extension. The displacement at
M is u(M.s) —u(M).

(e,.¢;) being an orthonormal basis, we define a problem B as follows : the crack extends
over a length s from the point O a zero traction is imposed on 2Q,, a zero displacement
on Q,. and a unit point force in the direction ¢, is exerted on the point M. The resulting
displacemients on the lips of the crack extension are denoted v H (M, 5. 57).

Application of Betti's theorem to problems A and B yields

w(M.s) —u (M) = -—J [t () v (M s, 8)+Ht (8) v (M, s.57)] dy.
]

Difterentiating this equation with respect to the coordinates x, off M, we get also

Ut — T ) P syt - ’)] Iy’
----- §)— 31— = - §) - L8.8 §7) e (M8, 8) | dy
Dx,( ) 0.(,(1 ) o (s ox, (M.5.5) : ox, e

The quantities (Cv! £/dx ) (M, s, 5') in this equation can be interpreted as the displacements
on the lips of the crack induced by a unit “dipole™ at M, i.c. two infinite opposite forces
pirallel to e, applied on points separated by an infinitesimal vector collinear to e, the
distance between the points times the intensity ol the forces being equal to unity.

Let A and B be upper bounds for [v £ (M, s,57)] and [ov!" 5 /cx, (M, 5. 5') .1 Then

i, (M. 5) —u,(M)| € A f (tH () +]t ()] ds';

A ) .
ML) = o (M) S”f It ) +1t () .
L.\‘, ij [}

LR
v (Mo s and o~ (Mosos7) are obviously bounded functions of &* for every s, Le.
v
ettt
W (M55 € Cals) " (M)
éx

1

€ Co(s) forall "0 < 5" < 5

it is implicitly assumed here that for sufficiently small values of s, they are in fact bounded functions of both ¥’
and s, 1.6, Cs) and C;(s) are bounded functions of 5. The opposite would mean that when the length s of the
crack cxtension is shrunk to zero, some part of this extension goes to infinity under the effect of the point force
or the “dipole™ at M!
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Fig. 2. Edge crack in a circular disk.

Since t*(s) is O(s"~ '), these inequalities imply that |u,(M.s)—u (M)} and |(fw,/Cx)) x
(M.5) —(Cu,/ex (ML) are O(ﬁ). Therefore the displacement and its gradient (and
hence the stresses) are continuous with respect to s at s = 0.

[t must be stressed that this continuity property is satisfied only because the dis-
placement and the stresses arc considered at a point the position of which is fixed inde-
pendently of that of the crack tip. Quantities such as the SIFs, which characterize the stress
ficld near the moving singularity, arc known to be discontinuous at s = 0 when the crack
extension makes a non-zero angle with the initial crack.

4. STRESS INTENSITY FACTORS JUST AFTER THE KINK

We will now study the limit k* = (k1. k%) of k(s) = [k, (). k2(s)] when s tends towards
zero. More specitically, it will be shown that AT and A% depend only on the SIFs &, &, just
before the kink and the branching angle mm. This means in fact extending the validity of
the formulas for the &7s established by Bilby et af. (1977), Wu (19784, b) and Amestoy ¢t
al. (1979) in a particular case (straight initial crack, straight extension, infinite body,
uniform forces at infinity) to fully general situations.

We suppose first that the body is a circular disk of centre O, of radius R, subjected to
prescribed tractions and containing a traction-free edge crack (Fig. 2). r and 0 denoting
polar coordinates with respect to the Ox, axis, let t(0) = [a,,(0), 7,4(9)] be the traction
prescribed and .# = {t(0)} the foree field defined by this traction. The SIFs at the tip of the
extended crack are a continuous functional of this force ficld and all the gcometric pa-
rameters of the problem, linear with respect to #. This can be written symbolically

k(s) = Z(m, R, C.a*,C* s, %), (2

omitting for simplicity indications of dependence upon the remaining geometric parameters,
namely the derivatives of the curvature of the main crack at the point O and parameters
characterizing the crack extension shape to higher degrees of accuracy than o* and C*.
(That this omission is valid will be shown below.)

Let us consider a new structure identical to the first one, except that all dimensions
are multiplied by a factor 4; the gcometric parameters m, R, C, a*, C*, s become m, iR,
Cli, a"/\/ A, C*/i, is. Let the new structure be subjected to the same force ficld # as
the old onc, i.c. two points having the same polar angle are subjected to identical forces
per unit length. The stresses arc then the same at homothetical points so that the SIFs,
which arc limits of certain stress components times the square root of the distance from the
crack tip, are \/i. greater in the new structure than in the old one. Thus the functional Z
verifies the following “homogeneity property™ with respect to the geometric parameters:

L(m. iR, Clia*|/2.C* i ds.F) = J2L(m, R, C.a* C* 5, 5). 3)
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Fig. 3. Circular disk centered at the crack tip in an arbitrary body.

Let #* be the limit of the functional % when s tends towards zero (this is the functional
that gives k*). Taking the limit s — 0 in eqn (3). it is easily shown that #* satisfies the same
homogeneity property as & :

LHm. AR, Cli.a*|\J4, C*i, F) = JAL*m, R, C,a*,C*, #). e

We now come back to a body of arbitrary shape (Fig. 3). We consider. within the
body, circular disks of centre O and sufficiently small radius R for the crack to intersect
their boundary and to be traction-free within them (this is possible since the crack is
supposed to be traction-free in the vicinity of its tip : see Section 2). Let .#(R, 5) be the force
ficld on the boundary of the disk of radius R which results from the application of the
preseribed tractions t* and displacements u” on 8Q, and dQ,, when the crack extension
length is 5. The SIFs are unchanged if onc eliminates the exterior of the disk of radius R
while exerting the foree licld #(R, 5) on its boundary. Therefore they can be expressed,
using definition (2) of 2, as

k(s) = Zm, R, C,a*, C*,5,.#(R,s)]. 5

We now let s tend towards zero in this equation, R being fixed. Then & tends towards
* and £ (R, 5} tends towards the stress field #(R) exerted on the boundary of the disk of
radius R before the kink, because of the property of continuity of the stresses at a fixed
point established in Section 3. Therefore eqn (5) becomes:

k* = ler(} k(s) = Z*[m, R, C,a*, C*, F(R)]. (6)

Note the remarkable property that the SIFs just after the kink depend only on the stress
field hefore the kink. It remains to show that they depend on it only through the initial
SIFs.

Using the homogeneity property of #* (eqn (4)) with A = /R and the lincarity with
respect to the foree field, we trunsform egn (6) into

k* = 2*[m, 1, RC. /Ra*. RC*, /R#(R)). )

In intuitive terms, this transformation corresponds to looking at the disk of radius R
through a magnifying glass. Now let R — 0. The traction t = (6,,,5,4) on the boundary of
the disk of radius R admits an expansion of the form

t=k, 51'7(%? + T2(0) + [b,h,(8) + Ck, B, (0)] /R + O(R) ®)

where &, ki, T, b,, b, are coefficients (k,, £, and T are the initia/ SIFs and non-singular
stress). This is the classical [rwin-Williams stress expanston for a straight crack except for
the corrective term Ckﬂhp(ﬂ)\/}{ due to curvature ; the existence of this corrective term and



Crack paths in plane situations—1. 1317

the detailed expression of the functions h,(6) involved are established in the work of Ting
(1985). Therefore

JRIR) = {/Rt) = k,{L0)} +O0(/R).

Furthermore the functional #*(m. 1, RC. \/I_Qa"‘. RC*.*) tends towards #*(m.1.0,0.0,°)
when R tends towards zero. Therefore eqn (7) becomes in this limit:

k* = #*m.1,0.0,0.k,{f,(0)}] = F(m) -k ©)

where F(m) is a linear operator depending only on m and k the vector (k. k).

[t is observed that all curvature parameters vanish in this final expression ; in intuitive
terms, this is because the crack and its extension appear as straight in the limit of infinitesimal
disks. It is easy to see that the geometric parameters omitted for simplicity in (2) would
vanish in the final result as well, were they included in the notation; for instance the first
derivative of the curvature of the main crack at the point O would appear multiplied by R*
in (7) and consequently vanish in (9).

Equation (9) establishes the result announced. The above proof is the first one which
applies to fully general situations: other authors have given proofs under more or less
restrictive hypotheses : Cotterell and Rice (1980) for a nearly straight initial crack with a
small branching angle in an infinite body, and Sumi et af. (1983) for a straight initial edge
crack with a small branching angle in a body of arbitrary geometry.

An expression such as (9) will be termed universal in the sense that it depends on the
geometry und the loading only through focal parameters characterizing the crack shape
ncar the initial crack tip and the initial stress ficld (here the branching angle and the initial
SIFs). In contrast, a non-universel cxpression will depend on the geometry of the entire
body considered and/or on the whole traction and displacement ficlds imposed on its
boundary, and will therefore require a specific evaluation in each particular case.

5. DIFFERENTIABILITY OF TIHE STRESSES AT A FIXED POINT WITH RESPECT TO THE
CRACK EXTENSION LENGTH

The object of this section is to show that the displacement u(M, s) and stresses a(M, s)
at a fixed point M are differentiable with respect to s at s = 0, and that the corresponding
derivatives dw/ds (M. s = 0) and Ce/ds (M,s = 0) arc independent of the curvature pa-
rameters a*, C* of the crack extension,

We will use the following classical mathematical result

Proposition. Let f be a real function of a real variable x, defined for x > 0, continuous
at x = 0, differentiable for x > 0 and such that f7(x) tends toward a limit / when x tends
towirds zero. Then fadmits a (right-hand) derivative equal to fat x = 0.

For every s > 0, the crack propagates regularly, i.e. with a continuously varying
tangent. Therefore Rice's formulation of the theory of Bueckner’s weight functions (sce for
example Rice, 1985) can be used to evaluate the derivative du,/ds (M, 5), yielding

=] : U~ 2
L;%(M, 5) = -(-—Ei—)k,,(s)ﬁ,,(M. 5). (10)

In this equation £ and v are Young's modulus and Poisson’s ratio and I?,-,,(M.s) denotes
the pth SIF at the tip of the crack cxtension of length s which results from the application
of a unit point force in the direction e, at the point M, the portions ¢Q, and éQ, of the
boundary of the body being simultaneously subjected respectively to a zero traction and a
zero displacement. Differentiating eqn (10) with respect to the coordinates of M, we also
obtain
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¢ [ fu 2(1 -~ "”'a
;-(»Cx’)(Mr 5} = ’“‘ET‘— k »(35) :" ( M.5). (tH

s

The quantity El\,,,, ¢x; (M.s) in (11) can be interpreted in the same way as k,(M.s),
replacing the unit point force exerted on M by a unit “dipole™ like in Section 3. The right-
hand sides of eqns (10) and (11) tend towards the limits (AL =¥YEYK2E2(M) and
(201 =) EYK}*Ck2,¢x (M) when s tends towards zero. Furthermore u,( M. 5) and Cuféx, %
(M. 5) were proved in Sectlon 3 to be continuous with respect to s at s = 0. Using the abo»c
proposition. we conclude that «(M.s) and Cu,/cx; (M.s) (and hence the stresses) are
differentiable with respect to s at s = 0. and that

%‘fw.sﬂ) “——(}—E- 554008 (12)

? { du )2 o
i(‘ )(Ms—-O) _20 =) ;»/3-(&1) (13)

O

It is now casy to show that du,/ds (M. 5 = 0) and ¢ Os (QfOx )Y (M. s = ) (and hence
ca/os (M.y = 0)) are independent of «* and C*. Indeed the SIFs before the kink are
independent of the curvature parameters «*, C* of the fiture crack extension ; since the
SIFs just after the kink have been shown in Scction 4 to depend only on those before
the kink and the branching angle, they are also independent of «* and (*. The same
argument applics to the £ *(M)s and 9k%/dx, (M)s. Equations (12) and (13) imply then
that M, /ds (M, s = 0) and 0/0.\ (Ou,/dx,) (M. s = 0) arc also independent of ¢* and C*. This
concludes the prool.

It is worth noting that u(M, 5) and ¢(M, s) are nos twice differentiable with respect Lo
sats = 0. Indeed, anticipating (see Section 6 below) that the expansion of K(s) contains a
term proportional to \/\ onc notes that the expressions (10, 11y of du,. Os (M. s) and
dies{du,jox,} (M, s) contain also such terms. This shows clearly - -if necessary - that the
regularity propertics of u and o studied in Section 3 and here cannot be simply accepted as
“intuitively evident™ and need to be established in a rigorous way.

6. SECOND TERM OF THE EXPANSION OF THE STRESS INTENSITY FACTORS IN POWERS
OF THE CRACK EXTENSION LENGTH
The second term of the pranslon k(s) in powers of s cun bz, studied by the sume kind
of method as the first one, carrying all expunsions up to order \/ sinstead of 5" = 1.
It is proved in Appendix A that the expansion of the functional ¢ in powers of s does
not contain any term proportional to s* with 0 < ff < 12 (this is in fuct a consequence of
the crack extension shape, as described by eqn (1)), Thus it is of the form

Pm R, Coa*,C*.5,) = L*m, R,C.)+ L0 P (m R, Coa*, C* ) s+ o(/5) (14)
where the arguments «* and C* have been omitted in the functional 2°* since k* {and
hence #°*) have been shown in Scction 4 to be independent of these parameters.

Using (14) to expand (3) in powers of s, we get

L AR Cla I Y+ LD, AR, Cli, a*|Ji, C* i I ) is+0(/5)
= JiL* M R.C.FV+JiZ" Y m, R.C.a*, C*. F ) s+0(/).

Identification of the terms of order \/s‘ in both sides of this equality yields the following
homogeneity property for 2"
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L (m, AR, Cli,a*/\[1,C*4, F) = L (m,R,C.a*.C*. F). (15)

which differs from that for #* (eqn (4)) by a factor \/;

The results of Section 5 imply that the force field (R, s) on the boundary of the disk
of radius R is differentiable with respect to s at s = 0. Therefore its expansion in powers of
s is of the form

F(R.5) = F(R)+ I (R)s+o(s). (16)

Using this expression, eqn (14) and the linearity of the functionals with respect to the force
field to expand expression (5) for k(s) in powers of s, we get

k(s) = k* +kV2 s+ o(/5)
where k* and k"% are given respectively by (6) and
kK" = YDm, R, C,a* C*, 7 (R)). (17
Note that k'¥? just like k*, depends only on the stress field .# (R) before the kink. This is
a direct consequence of the abscence of a \/; term in the expansion of .# (R, 5), i.c. of the

differentiability of the stresses with respect tosat s = 0.
Using (15) with 4 = /R, we transform (17) into

kD = 20D, 1, RC, /Ra*, RC*,.# (R)].

Expanding now the functional 2¢"?(m, 1, RC, \/ku". RC*,+) in powers of R und using
eqn (8) for t = (o,,,0,), We get

- I
k' = 2 m, 1,0,0,0.4,{1,(0)}] T + 2% m, 1,0,0,0, T g(h}]
R

p(1/2)

o [m,1,0,0,0,k,{£,(0)}]+ O(/R).

+a*

This equation holds for every R, which means that the right-hand side is in fact independent
of R. Therefore the divergent R term must be zero. The O(/R) term is also zero,
because it must be constant while tending towards zero when R — 0. The expression of
k' becomes thus

. . Py L)
k' = 2 9m, 1,0,0,0, T g(0)}] +a* o [m, 1,0,0,0,k,{(,(0)}]

= TG(m)+a*H(m) -k (18)

where G{m) and H(m) arc a vector and a linear operator depending only on m. Hence k' &
has a universal expression (in the sense defined in Section 4) like k*.

In the particular case of a straight initial crack with a nearly straight extension (small
parameters m, a*, C*), Karihaloo et al. (1981) and Sumi ez al. (1983) obtained expressions
of k""" ? which fit into the general form (18). These expressions appeared in those works as
the beginning of an infinite expansion in powers of m, a*, C*. Equation (18) indicates that
quite remarkably, the only powers of @* and C* involved in this expansion are in fact |
and a*.

SAS 28:11-F
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7. THIRD TERM OF THE EXPANSION OF THE STRESS INTENSITY FACTORS IN POWERS
OF THE CRACK EXTENSION LENGTH

The functional .# is now expanded up to order O(s):

Lm.R.C.a*.C*5.7) = L*(m,R,C, )+ "' P (m.R,C.a*") /s
+Z""(m,R.C,a*.C*,"}s+o0(s) (19)
where the argument C* has been dropped in #'"¥ since (18) implies that k' ¥ and
£ ¥ are independent of this parameter. The O(s) dependence of the third term of the
expansion can be justified in the same way as the 0(\[9} dependence of the second one (see

Appendix A). Expanding eqn (3) up to order O(s) and identifying terms of this order in
the resulting identity, we get the following homogeneity property for &#'V:

L O(m AR, Cla,a*| JA,CHA, 5) = 7 L gomRr.Cat Cr ). (20)

We expand now eqn (5) in powers of s, using (16) and (19) ; we obtain thus
k(s) = k*+ k"2 /s +K Vs +o(s) 2n
where
K" = 2%, R.C.INRN+ 2V R.Coa* C* £ (R)].

or equivalently by eqn (20) (with 4 = |/R):
i
K'Y = #*m, R C,.#V(R)) +.’/’“’[m, L RC, \/Ru*, RC*, - .ﬂ‘(R)]. 2
v R

This equation shows that k'", unlike k* and kY%, depends on the stress ficld #(R, 5) after
the kink, through its derivative #V(R) with respect to s at s = 0.

We expand now the functional 2V(m, 1, RC, \/Ra"‘. RC*.+) in powers of R and use
egqn (8): eqn (22) becomes

k'Y = 2*(m R, C,F V(R + 2L "M, 1,0.0,0,k,1£,(0)} ]

(JI/’“’ 1
+2"(m, 1,0,0,0, T{g(0)}] —= +a"' U 1,000k, {1,(0)}]] /,
\/R R

+ 7 ”[m. 1,0.0.0.5,{h,()}]

+C s {f‘”(m 1.C".0.0.k,{£,(0)+ C'h,()})]-

1((1) (1*2 ’:(m
+q"' [ 1,0,0,0, T{g(D)}] + 2 A [1,1,0,0,0,k,{£,(0)!]
‘3‘/1(1)
+C*°TC-; [m.1,0,0,0,4,{£,(0)}]+ O(/R). (23)

The left-hand side of this equation is independent of R. In the right-hand side, all terms
from the fifth to the ninth are independent of R. and the last one tends towards zero with
R. Hence the sum of the first four terms has a finite limit for R ~0:
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|
L*[m. R C.I RN +2 " [m. 1.0.0.0.5,6,0)3] 5

~pih i
cZ (m.1,0.0,0.k,{f,(0)'] —

1
+2[m.1.0.0.0. T {g(0))] — +a* = 0.
R

~

ca* /R

Now (13) implies that #*""(R) depends on the loading only through the A?s. i.e. through
the k,s by (9). Hence, in the left-hand side of the above equality, the third term is the only
one which depends on T Since it is divergent. it must be zero. (To see that, vary the value
of T in the above equality.) Similarly. the fourth term is the only one which depends on
a*(S'"(R) is independent of this parameter : see Section 5) and diverges. so it must also be
zero. Hence the above equality implies that #*[m. R, C. #'"(R)] is the sum of a divergent
term Z'V[m.1.0.0.0.k,{f,(}]/R and a term which has a finite limit for R — 0. This
limit will be called the principal part of #*[m. R.C, #'"(R)] (for R — 0) and denoted Z:

1
Z = lim {&"*[m. R.C.# V(R + £V 1.0.0.0.k,{£,(0)}] E}‘ (29)

Letting R — 0 in (23) and using (24), we get the final expression of k'":
KD = Z+Um) b+ CHa K+ a*TK(m) +a* L) "k + C*M@mn) -k %

where b is the vector (), b)) and 1en), Jim), K(n), L(m), MEn) vectors or lincar operators
which depend only on .

The last five terms in the right-hand side of (25) are universal in the sense defined in
Section 4. On the other hand a detailed analysis of the Z term (see Appendix B) shows that
this guantity is not universal, because it does not depend only on focal geometric parameters
but also on the far geometry of the body considered.

Equation (25) confirms and extends the results of Sumi er al. (1983). These authors
were first to note the foss of the universality property in the third term of the expansion of
k{x) in powers of s, in the particular case of a straight initial edge crack with small purameters
m, a*, C*. They obtained k' as a sum of three universal terms proportional to b, «* 7 and
C*K, in accordance with eqn (25) (the term proportional to Ck was absent because of the
assumed straightness of the initial cruck and that proportional to a* 'k because the treatment
was limited to the first order in m, «®, C*), plus a non-universal one Z. The latter quantity
wits not interpreted as the principal part of Z*[m, R, C,.#'V(R)] but its dependence with
respect to the kink angle (to the first order) and to the loading was made explicit. This is
also feastble, in the most general case, using the present approach ; the derivation is given
in Appendix B.

§. CONCLUSION

We will finally outline how the results derived above can be used for numerical
predictions of crack paths, propagation being supposed to obey the principle of local
symmetry (PLS) of Goldstein and Salganik (1974). (This criterion has been used by numer-
ous authors and will be fully justified in the subsequent papers.)

According to the PLS, k1(s) is zcro along the whole propagation path. One must
therefore equate to zero the successive terms &%, &Y :’\/s. kYs. .. of the expansion of k,(s)
in powers of s. Using cqns (9), (18) and (25) for k*, k''/* and k'", this will yicld the values
of the parameters m, a* and C* characterizing the shape of the future crack extension, in
terms of k. 7, Z. b. It is thus possible to predict the crack path by a step-by-step method.
cach step involving a numerical evaluation of k, 7, Z, b and an extension of the crack by
a remeshing procedure.

One important drawback of this method is that the numerical evaluation of Tand b
is a rather difficult task if a good accuracy is asked for, not to mention that of Z which is
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even harder, whichever expression of this quantity (its definition as the principal part of
Z*m, R, C, #V(R)] or the detailed expression (B5) derived in Appendix B) is employed.+

It is possible in this respect to give other expressions of k'’ = and k'" more suitable for
practical purposes. Indeed. for a straight extension, eqn (18) for k'' *' reduces to

k"7 = TG(m).
Hence k'' ¥ can be written in the general case under the form

kYD = KD+ a*H(m) - k. (26)
The numerical evaluation of T can thus be replaced by that of [k'" *']%"_,. which can easily
be performed by comparing the initial SIFs with those at the tip of a short straight extension
in the direction =m (nm being previously determined from the condition &% = 0). In the
same way, if we consider a crack extension having a zero C*, eqn (25) for k'" reads

K"y = Z4+U(m) b+ CI(m) -k +a*TK(m) +a**L(m) - k.

Let us now introduce a non-zero C*: since * and .#'" have been proved in Sections 4
and 5 to be independent of this parameter, this does not change the value of Z which is the
principal part of Z*[m, R.C..#'"(R)] for R — 0, nor that of the other terms in the right-
hand side of this equality. Thus (25) can be rewritten as

KD = [k + C*M(m) - k. (27)
The numerical evaluation of Z is then replaced by that of [k, which can be done by
comparing the initial SIFs with those at the tip of a small extension having the values of
mm and a* determined previously from the conditions A% = 0 and &Y 2 = 0, but a zcro C'*,

It should be noted that in this approach, the non-universal character of the expression
ol k'" is not an important disadvantage: indeed the non-universal quantity (kY5 can
always be computed numerically with relative ease in each particular case, the essential
point being that it is independent of the parameter C* which is unknown a priori.

The use of this method requires, of course, knowledge of the detailed form of the
universal functions F(m), H{m), M{(m) involved in the determination of mm, «* and C*
from eqns (9), (26) and (27) and conditions k¥ =0, k4/¥ = 0, kY = 0. The incomplete
knowledge of the functions H(rm) and M(m) was precisely one of the main drawbacks in
Sumi's (19864, b) studies of crack paths in configurations of practical interest.f The com-
plete determination of these functions will be the subject of the next paper.

Acknowledgement — The author expresses his deep gratitude to Prof. M. Amestoy, the co-author of the subsequent
papers, who was the initiator of this study by pointing out the importance of extending the results obtainable in
some particular cases 1o fully general situations.
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APPENDIX A

The ain of this Appendix is (i) to show the necessity of considering crack extensions with shape characterized
by cgn (1) and (i) to justity the form (egns (14) and (19)) of the expansion of & in powers of's. (These questions
are strongly tied together, as will be seen.) For this we will suppose that the expansion ol y, in powers of v, and
that of 2 in powers ol s ar¢ of the form

Fr=ytett ottt (AD)

P K Cy*5.0) = 2%m R.C.)+ LM, R, C,y° )8 +o(s), (A2)

with 0 < 2 < [[2 and 0 < f# < 1/2 (and of course y* # 0, £ % 0), and show that necessarily a = fi = 1:2. A

similar reasoning can be made to show that if these expansions contain terms proportional to y}** and s with
12cry cland 12 < <l thena' =ff = 1. -

The reasoning tollows the same lines as that in Section 6, replacing 2P, /s, and «* by £*, & and y°.
When dimensions are multiplied by 4, y* is divided by 4*. Therefore the homogencity property of # reads (instead
of (3)):

L AR ClA YA, F) = JAL(m, R,C.y*. 5).
Expanding this equation in powers of 5 using egn (A2), and identifying terms of order ##, we get
PO AR CIA Y3, F) = AP P(m, R.C, 9%, F). (A3)
The expansion of k(s) is readily obtained by inserting eqns (16) and (A2) into egn (5):
k(s) = k* + kP +o(s7)
where
k'® = #Plm, R C,y*, F(R)).
Using eyn (A3) with 4 = /R, we transform this equation into

k® = #P[m, |, RC.R'7*. R 2 F(R)]. (Ad)

Let us now assume that f# < 2. Expanding Z®(m, |, RC, R*7*,°) in powers of R and inscrting the result and
cqn (8) into egn (A4), we get

tSince Oy, is tangent to the crack extension at the point O (see Section 2), the expansion of y, in powers of
¥y cannot contain any term proportional to ¥} with0 g2 < 1.
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| .
K? = £7(m. 1.0.0.k, ()] 5 = O(R*4, R 3°5),

Since the left-hand side is independent of R. the divergent R~ term in the right-hand side is necessarily zero.
Therefore this equality yields. in the limit R —0: k'” = 0, which implies that 2Z'® = 0, in contradiction with our
basic hypotheses.

Our assumption that § < z is therefore absurd. which means that the expansion of Z in powers of s does
not contain any non-constant (with respect to 5) term with exponent smaller than x. Thus the first non-constant
term has exponent 8 = x.

Let us then assume that z < ;2. Expanding eqn (A4) as above. we get

(Eyll)

K=yt
R

[m. l.O.O./\',,,'I',,(())”...O(R:. R' %)

where the divergent R “* term has been discarded because it is zero by the same argument as above. Taking the
limit R — 0. we obtain

K = 7 *®(m) k (AS)

where ® is a lincar operator depending only on m.

We now take into account the fact that the crack extensions to be considered must be obtainable by actual
propagation of the crack. Adopting the PLS as a criterion (this will be fully justificd in the subsequent papers).
we must equate to zero the successive terms A% KV's* .. of the expansion of k.(s) in powers of 5. The first
condition, k% = 0. vields the value of the kink angle =m. The second condition, &4 = 0, yields upon use of egn
(AS):

PPk, Dy (k] =0 (A6)

where the @ s denote the components of @), Except in exceptional cases, @, (n)k + @ (n0k, has no reason
to be zero for the value of me determined from the condition &% = 0. Henee eqn (A6) implies that 3* must be zero,
in contradiction with our basic hypotheses.t

We conclude that our assumption x < 1 2 s wrong, i.e. that x = f§ = /2. Q.ED.

APPENDIX B

The object off this Appendix is to study the term 7 of egn (23) in more detail. This will allow us (i) to
substantiate the statement made in Section 7 that this term is sen-universal | (i) to re-derive the results of Sumi
et al. (1983) by a ditferent method and to extend them to tully general situations. These authors obtained, in the
particulir case of a straight initial edge crack with small parameters m, a®, C*, the following expressions of the
components ol 7.

Zo =K~ + 3K mmlk + 8~ (B + 3K ) mmlk, + O(m?)

7, = [F:, +<[5“ - ':3)nm:lk, +|:E,_, +<[,:— —-k'_.,)mn:lk,«l—()(m"). (H1)

In these cquations & and &, denote as usual the initial SIFs and the £,,s coctlicients which depend on the whole
geometry of the body and the initiaf crack and on the partition (°Q,, ©Q,) of ¢Q, but are independent of the
parameters m, «*, C* characterizing the crack extension shape, and also of the loading.

First we will make explicit the dependence of Qu,/Cs (M. x = 0) with respect to m und the Joading in egn (12).
Equation (9) reads, in component notation: 42 = F,_(m)k,. The £%(M)s introduced in Section § are given similarly
by K(M) = F, (m)k, (M) where £, (M) is defined in the same way as £, (M, ) and £2(M) (see Section 5), except
that the SIF is 1o be taken at the tip of the initial crack. Therefore eqn (12) can be rewritten as

h 2 [ 2
('uf(M.x =0) = = IV) Fo(m)F. (mk £ (M),
s 3

or, introducing the vector K. (M) = £, (M), £, (M)] and dropping indications of dependence of the £,,s upon m
for simplicity :
21 =Y

Cu L R
""";(1".5 =0) = -~ 'E—-~-» F,.F. kK. (M) (B2)

The traction
+This phenomenon does not happen with the correct expansions (see (1), (14). (19)); indeed the sceond

condition reads then &Y' ¥ = 0, i.e. by eqn (18): TG, (m) +a*[H,,(m)k, + H ;2(m)k ;] = 0, which yiclds generally a
non-zero value for a*.
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ct éa,, 8o,y
— =0)=|—= = —_— (M.s =
a',(M..s 0) I:as (M,s=0), P (M.s 0)]

corresponding to the displacement field {cu/ds (M.s = 0)} is deduced from this displacement by differentiation
with respect to the coordinates of M, application of the elasticity operator and contraction with the vectors e,,
e,. This can be written symbolically ét,és(M,s =0) = Ly,*u/és(M,s = 0) where Ly, is a linear differential
operator depending on M. Application of this operator to both sides of eqn (B2) yields then. noting that in the
right-hand side, the only term which depends on M is k.(M). and incorporating the 2(1 —v),E factor into L,,:

Ct -
:;}(M.s =0) = F..F.k.Ly-k.(M).

Z*m, R.C,I'N(R)] = L*[m.R.C,{(t/ds(M.s = 0)}] can thus be written. omitting the arguments m. R, C in
£* for simplicity and using the linearity with respect to the force field :

LI = L. Fuk Ly k(M) = Fo F k. 2Ly K (M)}]. (B3)

It follows from the fact that the &£,.(M)s are defined as SIFs at the tip of the initial crack that the force
field [Ly-KAM)} is mdependent of the kink angle am. Therefore the components of £*[{L,* k(M) =
J‘[m R.C.{L,-k (M)}] are given. using eqn (9). by

[Z*({Ly KM}, = Fokn(R)

where £,.(R) denotes the gth SIF at the tip of the initial crack arising from the application of the force ficld
{Ly* k.(M)} on the boundary of the disk of radius R. Insertion of this expression into eqn (B3) yiclds

(L2 (F "N, = FuFok F k. (R). (B4)

Now we know by eqn (24) that Z*[.#'"] is the sum of a divergent term proportional to R~ plus another
term which has a finite limit for R — 0 (which we have called its principal part Z). Since in the right-hand side of
eyn (B4), the only term which depends on R is £, (R). this quantity must also be the sum of a divergent term
proportionitt to R ' plus another term which has a finite limit for 8 - 0 this limit will again be called the
principal part of £, (R) and denoted £, Taking the principal parts of both sides of (B4), we get then:

7, = F kL FoF. k.
i.c. in matrix notation ([X']" denoting the transpose ol [X]):
2] = [Fm|[KILFem)| [ Fem)| [k} (B5)

where indications of dependence upon m have been restored.

The interpretation of the [£] matrix in eqn (BS) can be summarized as follows : k',q(M) is the gth SIF at the
initiad crack tip created by a unit point force in the direction ¢, exerted on the point M, 9Q,/0€), being simultancously
subjected to i zero traction/displacement; £,,(R) is the pth SIF at the initial crack tip which resuits from the
application, on the boundary of the disk of radius R, of the stresses deriving from the displacement ficld
u (M) = (21 = v}/ EYK, (M), ugM) = (1 ~v})/EYKE, (M) and £, is the principal part of £, (R) for R -0,
i.e. its limit once its divergent R 7' part has been subtracted.

From this follows that the [£] matrix depends on the geometry of the entire body and the initial crack and
on the partition (0Q,.cQ,) of ¢Q (it is & non-universal quantity), but not on the geometric purameters m, a*, C*
of the eruck extension nor on the loading. Thus the influences of the various geometric and mechanical parameters
appear as picely separated in the expression (BS) ot Z: (i) that of the loading, through the SIFs ut the tip of
the inttial crack ; (it) that of the branching angle, through the [F) and [£]" matrices; and (iit) that of the geometry
of the body and the initial crack (including the partition of Q), through the {£] matrix. The third influence is in
fact the only one of non-universal character.

Comparison between our result and that of Sumi e al. (1983) requires an expansion of (B5) to the first order
in m. The first-order expression of the F,s, as given for instance by Wu (1979), is

Fo(m) =1 4+0m®); F;(m)=— ¥nn+0(m'): Fy(m) = gm+0(m“);
Fia(m) = L+0(m?).

Inscrting these formulas into (BS). one obtains first-order expressions for the components of 7 which coincide
with eqns (B1) of Sumi er al.

In the work of Sumi et al.. the £,,s were interpreted as the S1Fs at the initial crack tip which result from the
application of Bueckner's (1972) fundamental force and displacement fields (proportional to r~ ¥ and r-'?
respectively) on €Q, and 2Q,. It is possible, though somewhat intricate. to cstablish the correspondence between
this point of view and ours. However it must be stressed that the interpretation of Sumi et al. is valid only in the
particular case studied by these authors of a straight initial edge crack, and that the (admittedly less simple)
interpretation given here is the only possible onc in the general case.



